%I #4 Jan 19 2018 08:50:46
%S 0,3,8,30,153,710,3490,17087,84008,413964,2040233,10061180,49619258,
%T 244733629,1207118898,5954066110,29368423541,144860206974,
%U 714526449382,3524421573945,17384313721480,85748656629026,422957892588941
%N Number of nX3 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 3 of A298461.
%H R. H. Hardin, <a href="/A298456/b298456.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) +10*a(n-2) -19*a(n-3) -42*a(n-4) +17*a(n-5) +27*a(n-6) -39*a(n-7) +45*a(n-8) +75*a(n-9) -35*a(n-10) -6*a(n-11) +6*a(n-12) -8*a(n-13) for n>15
%e Some solutions for n=7
%e ..0..1..1. .0..0..1. .0..0..0. .0..0..1. .0..0..0. .0..0..0. .0..0..0
%e ..0..0..1. .0..1..1. .0..1..0. .0..1..1. .0..0..1. .1..0..0. .0..1..0
%e ..0..0..1. .1..1..1. .1..0..1. .0..0..1. .0..1..1. .1..1..0. .0..1..1
%e ..1..0..1. .1..1..0. .1..1..1. .0..1..1. .1..1..0. .1..1..0. .1..0..1
%e ..1..1..0. .1..0..0. .0..0..0. .0..0..1. .0..0..0. .1..0..0. .0..1..0
%e ..1..0..0. .1..1..0. .1..0..1. .1..1..0. .1..0..0. .1..0..0. .1..0..1
%e ..1..1..0. .1..1..1. .1..1..1. .1..0..0. .1..1..0. .1..1..0. .1..1..1
%Y Cf. A298461.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 19 2018