login
Number of nX3 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
2

%I #4 Jan 18 2018 07:42:17

%S 1,18,56,223,849,3387,13075,51006,199243,777845,3035261,11848853,

%T 46252538,180542983,704739373,2750937235,10738195965,41916200522,

%U 163618636603,638680511133,2493070208921,9731625088447,37987108531520

%N Number of nX3 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

%C Column 3 of A298389.

%H R. H. Hardin, <a href="/A298384/b298384.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +4*a(n-3) -17*a(n-4) -25*a(n-5) +23*a(n-6) +33*a(n-7) +41*a(n-8) -145*a(n-9) -147*a(n-10) +24*a(n-11) +384*a(n-12) +267*a(n-13) -72*a(n-14) -207*a(n-15) -61*a(n-16) +51*a(n-17) +10*a(n-18) -14*a(n-19) -4*a(n-20) for n>21

%e Some solutions for n=7

%e ..0..0..0. .0..0..0. .0..0..1. .0..0..0. .0..1..0. .0..1..1. .0..1..0

%e ..0..0..0. .1..1..1. .1..0..1. .1..0..1. .1..0..0. .0..1..0. .0..1..0

%e ..1..1..1. .0..1..0. .1..0..1. .1..1..1. .0..0..1. .0..1..0. .1..0..1

%e ..0..0..0. .1..0..1. .0..1..0. .1..0..1. .1..1..1. .1..1..0. .0..0..0

%e ..1..0..1. .0..0..0. .1..0..0. .0..1..0. .0..0..0. .0..0..1. .1..1..1

%e ..0..1..0. .1..1..1. .1..1..1. .0..1..0. .1..1..1. .1..1..0. .0..0..0

%e ..0..0..1. .1..1..1. .0..0..0. .0..1..0. .0..0..1. .0..0..0. .0..0..0

%Y Cf. A298389.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 18 2018