login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (9*x^3+9*x+1)^(1/3).
1

%I #17 Jan 20 2024 15:28:56

%S 1,3,-9,48,-288,1917,-13563,99927,-758079,5879754,-46401687,371336886,

%T -3005973612,24568135839,-202441986099,1679863711851,-14024710539684,

%U 117715876380531,-992724682487382,8407187391492162,-71467928398473984,609605247759545934,-5215842747304421544,44752623977413097928,-384969343166207926893

%N Expansion of (9*x^3+9*x+1)^(1/3).

%H Robert Israel, <a href="/A298308/b298308.txt">Table of n, a(n) for n = 0..1046</a>

%F G.f.: (9*x^3+9*x+1)^(1/3).

%F D-finite with recurrence: (-9+9*n)*a(n)+(15+9*n)*a(n+2)+(n+3)*a(n+3) = 0.

%F a(n) = Gamma(4/3)*Sum_{0<=j<=n/3} 9^(n-2*j)/(Gamma(4/3-n+2*j)*(n-3*j)!*j!).

%e (9*x^3+9*x+1)^(1/3) = 1+3*x-9*x^2+48*x^3-288*x^4+1917*x^5+...

%p f:= gfun:-rectoproc({(-9+9*n)*a(n)+(15+9*n)*a(n+2)+(n+3)*a(n+3), a(0) = 1, a(1) = 3, a(2) = -9},a(n),remember):

%p map(f, [$0..30]);

%t CoefficientList[Series[(9*x^3 + 9*x + 1)^(1/3), {x, 0, 25}], x] (* _Wesley Ivan Hurt_, Jan 20 2024 *)

%K sign

%O 0,2

%A _Robert Israel_, Jan 16 2018