login
Number of nX3 0..1 arrays with every element equal to 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
2

%I #4 Jan 15 2018 14:56:40

%S 0,3,1,4,3,7,14,35,89,242,643,1713,4584,12341,33393,90828,247775,

%T 677335,1853786,5076655,13907485,38106762,104424087,286173877,

%U 784293860,2149515757,5891305033,16146865524,44255648343,121297428367,332457355358

%N Number of nX3 0..1 arrays with every element equal to 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.

%C Column 3 of A298259.

%H R. H. Hardin, <a href="/A298254/b298254.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +3*a(n-2) -7*a(n-3) -14*a(n-4) +2*a(n-5) +34*a(n-6) +16*a(n-7) -20*a(n-8) -48*a(n-9) -50*a(n-10) +36*a(n-11) +89*a(n-12) +39*a(n-13) +3*a(n-14) -9*a(n-15) -14*a(n-16) +2*a(n-18) for n>19

%e Some solutions for n=7

%e ..0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..1

%e ..1..0..1. .0..0..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..1

%e ..1..1..1. .1..0..1. .0..0..0. .0..0..0. .1..1..1. .1..1..1. .0..1..0

%e ..1..0..0. .1..1..0. .1..1..1. .0..0..0. .1..1..1. .1..1..1. .1..0..0

%e ..0..1..0. .1..0..1. .1..1..1. .1..1..1. .1..1..1. .1..1..1. .1..1..1

%e ..0..1..1. .0..0..1. .0..0..0. .1..1..1. .1..1..1. .0..0..0. .1..0..1

%e ..0..0..1. .0..1..1. .0..0..0. .1..1..1. .1..1..1. .0..0..0. .0..0..0

%Y Cf. A298259.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 15 2018