Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 25 2018 03:02:34
%S 1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,
%T 1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,
%U 2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,1,2,2,1,2,2,1,2,2,1,1,2,2,1,2,2,1,2,2,1
%N Fixed point of the morphism 1->1221, 2->122.
%C This is the morphism in standard form. Its mirrored version 1->211, 2->2112 has fixed point 2,1,1,2,2,1,1,2,1,1,2,1,1,2,2,1,1,2,2,1,1,2,1,1,2,... which is the sequence of first differences of A284895. This can be seen by studying A284893, the fixed point x of the morphism sigma 0->01, 1->0111. Then x is also fixed point of sigma^2: 0->010111, 1->01011101110111.
%C Note that x is a concatenation of 01 and 0111, and both words are always followed by 01, the common prefix of 01 and 0111. This implies that the two sigma^2 words induce increments in the positions of 1, which are respectively 2,1,1,2 and 2,1,1,2,1,1,2,1,1,2. This implies that 1->211, 2->2112 generates the sequence of first differences.
%t Nest[Flatten[# /. {1 -> {1, 2, 2, 1}, 2 -> {1, 2, 2}}] &, {1}, 8] (* _Michael De Vlieger_, Jan 22 2018 *)
%Y Cf. A284893, A284893, A284895.
%K nonn
%O 1,2
%A _Michel Dekking_, Jan 15 2018