%I #6 Jan 16 2018 11:38:36
%S 4,26,92,354,1385,5450,21362,83805,328854,1290664,5064904,19876664,
%T 78004135,306122212,1201352626,4714619350,18502172075,72610411677,
%U 284954178325,1118281595938,4388613371256,17222788578148,67589559640000
%N Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
%C Column 3 of A298195.
%H R. H. Hardin, <a href="/A298190/b298190.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) -4*a(n-2) -2*a(n-3) +9*a(n-4) -26*a(n-5) +37*a(n-6) -19*a(n-7) +11*a(n-8) -62*a(n-9) -6*a(n-10) +50*a(n-11) +38*a(n-12) -20*a(n-13) -43*a(n-14) -2*a(n-15) +20*a(n-16) +8*a(n-17) for n>19
%e Some solutions for n=7
%e ..0..0..1. .0..1..0. .0..1..1. .0..0..1. .0..0..1. .0..1..1. .0..1..0
%e ..0..0..1. .0..1..0. .1..1..0. .0..1..0. .0..1..0. .1..0..0. .0..1..0
%e ..0..0..1. .1..0..1. .0..0..0. .1..0..0. .0..1..0. .1..1..1. .1..1..0
%e ..1..1..1. .1..0..1. .1..1..1. .1..1..1. .0..0..0. .0..0..0. .0..1..0
%e ..1..1..0. .1..0..0. .0..0..1. .0..0..0. .1..0..1. .1..0..1. .0..1..0
%e ..0..0..1. .0..1..1. .1..1..0. .1..1..1. .0..0..1. .0..0..1. .0..0..1
%e ..1..1..1. .1..0..0. .0..0..1. .0..1..0. .1..1..0. .0..1..1. .1..0..0
%Y Cf. A298195.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 14 2018