login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
4

%I #4 Jan 14 2018 09:40:34

%S 0,0,0,0,1,0,0,1,1,0,0,2,1,2,0,0,3,2,2,3,0,0,5,3,3,3,5,0,0,8,5,4,4,5,

%T 8,0,0,13,8,6,5,6,8,13,0,0,21,13,9,7,7,9,13,21,0,0,34,21,14,10,10,10,

%U 14,21,34,0,0,55,34,22,15,14,14,15,22,34,55,0,0,89,55,35,23,20,19,20,23,35,55

%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 3, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

%C Table starts

%C .0..0..0..0..0..0..0..0..0...0...0...0...0....0....0....0....0.....0.....0

%C .0..1..1..2..3..5..8.13.21..34..55..89.144..233..377..610..987..1597..2584

%C .0..1..1..2..3..5..8.13.21..34..55..89.144..233..377..610..987..1597..2584

%C .0..2..2..3..4..6..9.14.22..35..56..90.145..234..378..611..988..1598..2585

%C .0..3..3..4..5..7.10.15.23..36..57..91.146..235..379..612..989..1599..2586

%C .0..5..5..6..7.10.14.20.29..44..68.106.166..262..416..663.1059..1695..2718

%C .0..8..8..9.10.14.19.27.38..58..90.142.225..362..587..959.1572..2587..4270

%C .0.13.13.14.15.20.27.41.58..91.145.240.398..680.1157.2003.3476..6073.10620

%C .0.21.21.22.23.29.38.58.81.127.203.341.574.1019.1784.3212.5779.10480.18971

%H R. H. Hardin, <a href="/A298187/b298187.txt">Table of n, a(n) for n = 1..760</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: a(n) = a(n-1) +a(n-2)

%F k=3: a(n) = a(n-1) +a(n-2)

%F k=4: a(n) = 2*a(n-1) -a(n-3) for n>4

%F k=5: a(n) = 2*a(n-1) -a(n-3) for n>4

%F k=6: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-7) for n>8

%F k=7: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +a(n-6) -a(n-7) +a(n-8) -a(n-10) +a(n-11) for n>12

%e Some solutions for n=7 k=4

%e ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0

%e ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0

%e ..0..0..0..0. .0..0..1..1. .0..0..0..0. .1..1..1..1. .0..0..0..0

%e ..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1

%e ..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1

%e ..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0

%e ..0..0..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0

%Y Column 2 is A000045(n-1).

%Y Column 3 is A000045(n-1).

%Y Column 4 is A001611(n-1).

%Y Column 5 is A157725(n-1).

%K nonn,tabl

%O 1,12

%A _R. H. Hardin_, Jan 14 2018