login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1 + x)/((1 - x)*(1 - 322*x + x^2)).
2

%I #57 Nov 20 2020 05:02:33

%S 0,1,324,104329,33593616,10817040025,3483053294436,1121532343768369,

%T 361129931640120384,116282716455774995281,37442673568827908360100,

%U 12056424606446130716956921,3882131280602085262951768464,1250034215929265008539752488489

%N Expansion of x*(1 + x)/((1 - x)*(1 - 322*x + x^2)).

%C 16*k*a(n) provides infinitely many x-values solutions (x,y) of x*(5*x + k) = y^2.

%C This follows from the fact that 5*16*a(n) + 1 is a perfect square: more precisely, 80*a(n) + 1 = A023039(n)^2.

%C This is a divisibility sequence, that is a(n) divides a(m) if n divides m. It is the case P1 = 324, P2 = 644, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Jan 19 2018

%H Colin Barker, <a href="/A298101/b298101.txt">Table of n, a(n) for n = 0..300</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (323,-323,1).

%F G.f.: x*(1 + x)/((1 - x)*(1 - 322*x + x^2)).

%F a(n) = a(-n) = ((2 + sqrt(5))^(4*n) + (2 - sqrt(5))^(4*n) - 2)/320.

%F a(n) = A225786(n)/48. This is the case k=3 of the first comment. Example: for n = 2, 16*3*a(2) = A225786(2) = 15552 and 15552*(5*15552+3) = 34776^2.

%F a(n) = A049660(n)^2.

%F a(n)*(80*a(n) + 1) = 81*A253368(n)^2 for n>0.

%F a(n)*a(n-2) = (a(n-1) - 1)^2.

%F a(n) = 322*a(n-1) - a(n-2) + 2.

%F a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3). - _Iain Fox_, Jan 12 2018

%F a(n) = A298271(n)+A298271(n-1). - _R. J. Mathar_, Nov 20 2020

%p P:=proc(n) trunc(evalf(((2+sqrt(5))^(4*n)+(2-sqrt(5))^(4*n)-2)/320,1000));

%p end: seq(P(i),i=0..13); # _Paolo P. Lava_, Jan 18 2018

%t CoefficientList[x (1 + x)/((1 - x) (1 - 322 x + x^2)) + O[x]^20, x]

%o (Sage)

%o gf = x*(1+x)/((1-x)*(1-322*x+x^2))

%o print(taylor(gf, x, 0, 20).list())

%o (Maxima) makelist(coeff(taylor(x*(1+x)/((1-x)*(1-322*x+x^2)), x, 0, n), x, n), n, 0, 20);

%o (PARI) first(n) = Vec(x*(1 + x)/((1 - x)*(1 - 322*x + x^2)) + O(x^n), -n) \\ _Iain Fox_, Jan 12 2018

%Y Cf. A023039, A049660, A225786, A253368, A298271.

%K nonn,easy

%O 0,3

%A _Bruno Berselli_, Jan 12 2018