Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #89 Oct 15 2018 07:22:48
%S 2,2,2,4,2,6,2,16,8,10,2,1260,2,28,24,16,2,162,2,2080,6,22,2,207480,7,
%T 52,27,420,2,43890,2,256,21,102,370,5988060,2,190,12,7412680,2,2016,2,
%U 507496,495,46,2,1486179696,68,5050,476,66300,2,3292758,274,72682120
%N Least k > 1 such that all divisors of (k^n-1)/(k-1) are == 1 (mod n).
%C a(n) is the smallest k > 1 such that Phi_m(k) has all its divisors == 1 (mod n) for all m > 1 dividing n, where Phi_m(x) are the cyclotomic polynomials.
%C If n is a prime, then a(n) = 2.
%C It seems that if n is a composite, then a(n) > 2. We have a(91) = 3.
%C If n is even, a(n) is divisible by n.
%C The generalized Bunyakovsky conjecture (Schinzel's hypothesis H) implies that there exist k divisible by n such that Phi_m(k) is prime for all m > 1 dividing n, and thus that a(n) always exists.
%C If n is composite, n is a weak Fermat pseudoprime to base a(n).
%C a(n) >= A239452(n), with equality for primes and 1, 4, 9, 16, 21, 25, 39, 91, ... Are there infinitely many such numbers?
%C a(n) = n for n = 2, 4, 6, 10, 16, 22, 27, 46, ...
%C Problem: Are there infinitely many composite numbers n such that the number (n^n-1)/(n-1) has all divisors d == 1 (mod n)?
%C Conjecture (T. Ordowski, 2018): Let b be an integer with |b| > 1. Then the number (b^n-1)/(b-1) has all divisors d == 1 (mod n) for a composite n if and only if the number n is a weak Fermat pseudoprime to base |b| such that, for each prime divisor p of n, the number (b^p-1)/(b-1) has all prime divisors q == 1 (mod n).
%C Also: least k > 1 such that all prime factors of (k^n-1)/(k-1) are == 1 (mod n). - _M. F. Hasler_, Oct 14 2018
%H Krzysztof Ziemak, <a href="/A298076/a298076.txt">PARI code for a(48)=1486179696</a>
%F a(n)^n == a(n) mod n.
%e a(10) = 10, because (10^10 - 1)/9 = 1111111111 = 11*41*271*9091 and all the prime factors p == 1 (mod 10), so all divisors d == 1 (mod 10).
%p g:= t -> convert(select(type,map(s -> s[1], ifactors(t,easy)[2]),integer),set):
%p F:= proc(n) local b,C,B,k,bb,Cb, easyf, c; uses numtheory;
%p if isprime(n) then return 2 fi;
%p C:= {seq(unapply(cyclotomic(m,t),t), m=divisors(n) minus {1})};
%p B:= select(t -> C(t) mod n = {1}, [$0..n-1]);
%p for k from 0 do
%p for bb in B do
%p b:= k*n+bb;
%p if b < 2 then next fi;
%p Cb:= remove(isprime,C(b));
%p if Cb = {} then return b fi;
%p easyf:= map(g, Cb) mod n;
%p if not(`union`(op(easyf)) subset {1}) then next fi;
%p if andmap(c -> factorset(c) mod n = {1}, Cb) then return b fi
%p od
%p od
%p end proc:
%p 2, seq(F(n),n=2..30);
%t {2}~Join~Table[Block[{k = 2}, While[Union@ Mod[Divisors[(k^n - 1)/(k - 1)], n] != {1}, k++]; k], {n, 2, 19}] (* _Michael De Vlieger_, Jan 11 2018 *)
%o (PARI) A298076(n,f=if(bittest(n,0),1,n))={forstep(k=max(f,2),oo,f, fordiv(n,m,m>1&& Set(factor(polcyclo(m,k))[,1]%n)!=[1]&& next(2));return(k))} \\ Becomes slow for multiples of 5 and 12 beyond n = 34. - _M. F. Hasler_, Oct 14 2018
%Y Cf. A239452, A292559, A298310.
%K nonn,hard,more
%O 1,1
%A _Robert Israel_ and _Thomas Ordowski_, Jan 11 2018
%E a(48)-a(56) from _Krzysztof Ziemak_, Jan 15 2018