%I
%S 1,4,3,13,32,53,125,386,727,1601,4568,9985,21185,56082,131531,284005,
%T 704432,1701725,3780885,9013570,21864175,49853913,116599048,280872201,
%U 652085433,1515923218,3617323651,8484345565,19735099744,46724667589
%N Number of n X 2 0..1 arrays with every element equal to 1, 3, 4 or 6 kingmove adjacent elements, with upper left element zero.
%C Column 2 of A298063.
%H R. H. Hardin, <a href="/A298057/b298057.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n1) + a(n2) + 8*a(n3)  16*a(n5).
%F Empirical g.f.: x*(1 + 3*x  2*x^2  2*x^3  16*x^4) / (1  x  x^2  8*x^3 + 16*x^5).  _Colin Barker_, Mar 22 2018
%e Some solutions for n=7:
%e ..0..1. .0..0. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0. .0..0. .0..0
%e ..1..0. .1..1. .0..1. .0..0. .0..0. .0..0. .1..0. .0..0. .0..0. .0..0
%e ..0..0. .1..1. .0..0. .1..0. .1..1. .0..1. .1..1. .1..0. .1..0. .0..1
%e ..1..0. .0..0. .1..0. .0..1. .0..0. .1..0. .0..1. .0..1. .0..1. .0..1
%e ..1..0. .0..0. .0..1. .1..1. .1..1. .0..0. .0..1. .0..0. .0..0. .0..0
%e ..1..1. .0..1. .0..0. .1..0. .0..0. .1..0. .0..0. .0..1. .0..0. .0..1
%e ..1..1. .1..0. .0..0. .0..1. .0..0. .1..0. .0..0. .1..0. .1..1. .0..1
%Y Cf. A298063.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 11 2018
