login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A298024.
2

%I #13 Aug 31 2023 11:28:19

%S 1,5,15,29,47,71,99,131,169,211,257,309,365,425,491,561,635,715,799,

%T 887,981,1079,1181,1289,1401,1517,1639,1765,1895,2031,2171,2315,2465,

%U 2619,2777,2941,3109,3281,3459,3641,3827,4019,4215,4415,4621,4831,5045,5265

%N Partial sums of A298024.

%C Linear recurrence and g.f. confirmed by Shutov/Maleev link in A298024. - _Ray Chandler_, Aug 31 2023

%H Rémy Sigrist, <a href="/A298025/b298025.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1, 1, -2, 1).

%F From _Colin Barker_, Jan 21 2018: (Start)

%F G.f.: (1 + 3*x + 6*x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)).

%F a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.

%F (End)

%Y Cf. A298024.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jan 21 2018

%E More terms from _Rémy Sigrist_, Jan 21 2018