%I #8 Jan 15 2018 14:14:34
%S 1,4,13,28,46,73,110,147,191,248,302,363,440,511,589,686,774,869,986,
%T 1091,1203,1340,1462,1591,1748,1887,2033,2210,2366,2529,2726,2899,
%U 3079,3296,3486,3683,3920,4127,4341,4598,4822,5053,5330,5571,5819,6116,6374,6639,6956,7231,7513,7850,8142,8441
%N Partial sums of A298014.
%H Colin Barker, <a href="/A298017/b298017.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,-2,0,-1,1).
%F From _Colin Barker_, Jan 15 2018: (Start)
%F G.f.: (1 + x)*(1 + 2*x + 7*x^2 + 6*x^3 + 6*x^4 + 3*x^5 + 5*x^6 - x^7 - 2*x^9) / ((1 - x)^3*(1 + x + x^2)^2).
%F a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n>10.
%F (End)
%o (PARI) Vec((1 + x)*(1 + 2*x + 7*x^2 + 6*x^3 + 6*x^4 + 3*x^5 + 5*x^6 - x^7 - 2*x^9) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^60)) \\ _Colin Barker_, Jan 15 2018
%Y Cf. A298014.
%K nonn,easy
%O 0,2
%A Chaim Goodman-Strauss and _N. J. A. Sloane_, Jan 13 2018