login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297935
Least prime k such that n concatenations of n+1 consecutive primes in base 2, starting from k, generate another prime in base 10.
1
2, 2, 3, 2, 19, 53, 163, 53, 167, 31, 3, 37, 743, 97, 271, 17, 3, 41, 131, 691, 97, 181, 587, 523, 227, 211, 229, 3, 1697, 151, 1009, 23, 131, 151, 3137, 1621, 71, 439, 389, 521, 811, 1039, 179, 23, 311, 193, 227, 5869, 577, 6263, 31, 1901, 113, 1439, 1451, 107
OFFSET
0,1
LINKS
EXAMPLE
a(4) = 19 because the concatenation of 19, 23, 29, 31, 37 in base 2 is concat(concat(concat(concat(10011, 10111), 11101), 11111), 100101) that is the prime 41414629 in base 10 and 19 is the least prime to have this property.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, i, k, n;
for n from 1 to q do for k from 1 to q do
a:=ithprime(k); b:=convert(a, binary, decimal);
for i from 1 to n-1 do a:=nextprime(a);
c:=convert(a, binary, decimal); b:=b*10^(ilog10(c)+1)+c; od;
a:=convert(b, decimal, binary); if isprime(a) then print(ithprime(k)); break; fi; od; od; end: P(10^3);
MATHEMATICA
Table[Prime@ SelectFirst[Range[2^12], Function[k, PrimeQ@ FromDigits[Join @@ IntegerDigits[Prime@ Range[k, k + n], 2], 2]]], {n, 0, 55}] (* Michael De Vlieger, Jan 09 2018 *)
PROG
(PARI) eva(n) = subst(Pol(n), x, 10)
decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
concat_primes(start, num) = my(v=[], s=""); forprime(p=start, , v=concat(v, [eva(binary(p))]); if(#v==num, break)); for(k=1, #v, s=concat(s, Str(v[k]))); eval(s)
a(n) = forprime(k=1, , if(ispseudoprime(decimal(digits(concat_primes(k, n+1)), 2)), return(k))) \\ Felix Fröhlich, Jan 09 2018
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Jan 09 2018
STATUS
approved