login
Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 07 2018 16:30:29

%S 16,69,41,84,114,162,248,368,520,786,1308,2126,3136,5052,7740,12312,

%T 19494,30630,49182,76130,120192,192110,300656,478708,758228,1197796,

%U 1891930,2998742,4757876,7519778,11939516,18922092,29922102,47514564

%N Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero.

%C Column 5 of A297889.

%H R. H. Hardin, <a href="/A297886/b297886.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A297886/a297886.txt">Empirical recurrence of order 86</a>

%F Empirical recurrence of order 86 (see link above)

%e Some solutions for n=7

%e ..0..0..0..1..1. .0..1..0..1..0. .0..1..0..1..1. .0..0..1..0..0

%e ..1..1..1..0..0. .1..0..1..0..0. .1..1..0..1..0. .1..1..0..1..1

%e ..1..0..1..1..1. .0..1..0..1..1. .1..1..0..1..1. .0..1..1..1..0

%e ..0..0..1..0..0. .1..1..0..0..0. .1..0..0..0..0. .1..0..0..0..1

%e ..1..1..1..0..1. .0..0..0..1..1. .1..1..1..0..1. .0..0..1..0..0

%e ..0..1..0..1..0. .1..1..0..1..0. .0..0..1..0..1. .1..1..0..1..1

%e ..0..1..0..1..1. .0..0..1..0..1. .0..1..1..0..1. .1..0..1..0..1

%Y Cf. A297889.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 07 2018