%I #4 Jan 07 2018 16:30:29
%S 16,69,41,84,114,162,248,368,520,786,1308,2126,3136,5052,7740,12312,
%T 19494,30630,49182,76130,120192,192110,300656,478708,758228,1197796,
%U 1891930,2998742,4757876,7519778,11939516,18922092,29922102,47514564
%N Number of nX5 0..1 arrays with every element equal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero.
%C Column 5 of A297889.
%H R. H. Hardin, <a href="/A297886/b297886.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A297886/a297886.txt">Empirical recurrence of order 86</a>
%F Empirical recurrence of order 86 (see link above)
%e Some solutions for n=7
%e ..0..0..0..1..1. .0..1..0..1..0. .0..1..0..1..1. .0..0..1..0..0
%e ..1..1..1..0..0. .1..0..1..0..0. .1..1..0..1..0. .1..1..0..1..1
%e ..1..0..1..1..1. .0..1..0..1..1. .1..1..0..1..1. .0..1..1..1..0
%e ..0..0..1..0..0. .1..1..0..0..0. .1..0..0..0..0. .1..0..0..0..1
%e ..1..1..1..0..1. .0..0..0..1..1. .1..1..1..0..1. .0..0..1..0..0
%e ..0..1..0..1..0. .1..1..0..1..0. .0..0..1..0..1. .1..1..0..1..1
%e ..0..1..0..1..1. .0..0..1..0..1. .0..1..1..0..1. .1..0..1..0..1
%Y Cf. A297889.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 07 2018