login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297876
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3 or 5 king-move adjacent elements, with upper left element zero.
8
0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 2, 0, 2, 0, 0, 11, 3, 3, 11, 0, 0, 13, 0, 10, 0, 13, 0, 0, 34, 3, 20, 20, 3, 34, 0, 0, 65, 6, 68, 80, 68, 6, 65, 0, 0, 123, 23, 185, 231, 231, 185, 23, 123, 0, 0, 266, 68, 561, 579, 887, 579, 561, 68, 266, 0, 0, 499, 205, 1588, 2437, 3307, 3307, 2437
OFFSET
1,8
COMMENTS
Table starts
.0...0..0....0....0.....0......0.......0........0.........0.........0
.0...1..3....2...11....13.....34......65......123.......266.......499
.0...3..0....3....0.....3......6......23.......68.......205.......572
.0...2..3...10...20....68....185.....561.....1588......4814.....14322
.0..11..0...20...80...231....579....2437.....7507.....26278.....91622
.0..13..3...68..231...887...3307...13910....55501....228947....947582
.0..34..6..185..579..3307..13778...69160...325394...1617897...7900112
.0..65.23..561.2437.13910..69160..428609..2364407..14043631..81562636
.0.123.68.1588.7507.55501.325394.2364407.15589226.109627764.757954739
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)
k=3: [order 17] for n>18
k=4: [order 52] for n>53
EXAMPLE
Some solutions for n=7 k=4
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..1..0..1. .0..1..1..0. .1..0..1..0. .0..0..0..0. .0..0..0..0
..0..1..1..0. .1..0..1..0. .1..1..0..0. .1..1..1..1. .1..1..1..1
..0..1..0..1. .1..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..1
..0..1..0..1. .1..1..1..1. .1..0..0..1. .0..1..0..1. .0..0..1..0
..0..1..0..1. .0..0..0..0. .1..0..1..0. .0..1..1..0. .1..0..0..1
..0..0..1..1. .0..0..0..0. .1..1..0..0. .0..0..0..0. .1..1..1..1
CROSSREFS
Sequence in context: A287712 A287784 A325010 * A298139 A298087 A298259
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 07 2018
STATUS
approved