login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime powers p^e with odd exponent e such that rho(p^(e+1)) is prime, where rho is A206369.
1

%I #15 Jan 09 2018 00:25:16

%S 8,27,32,125,243,512,1331,2048,32768,50653,79507,103823,131072,161051,

%T 177147,357911,1419857,2097152,2248091,3869893,11089567,15813251,

%U 16974593,20511149,28934443,69343957,115501303,147008443,263374721,536870912,844596301,1284365503,1305751357

%N Prime powers p^e with odd exponent e such that rho(p^(e+1)) is prime, where rho is A206369.

%C Along with A065508, these are the integers mentioned at the bottom of page 4 of the Iannucci link. Let x = p^e, and q = rho(p^(e+1)), then x/rho(x) = (x*p*q)/rho(x*p*q). An example with A065508 is 3, for which rho(3) is 7, so 3 and 3*3*7 have the same x/rho(x) ratio, 3/2.

%C Note that there are other "rho-friendly pairs" that have a different, yet simple, form like for instance 7^5 and 7^8*117307.

%C Number of terms < 10^k: 1, 3, 6, 8, 11, 16, 20, 26, 31, 46, 73, 110, 198, 327, 611, 1157, 2135, 4107, 7724, 14771, 28610, etc. - _Robert G. Wilson v_, Jan 07 2018

%H Robert G. Wilson v, <a href="/A297868/b297868.txt">Table of n, a(n) for n = 1..28610</a>

%H Douglas E. Iannucci, <a href="http://www.integers-ejcnt.org/g41/g41.Abstract.html">On a variation of perfect numbers</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41.

%e 8=2^3 is a term because rho(2*8)=11 is prime, so 8 and 8*2*11 have the same x/rho(x) ratio, 8/5.

%t rho[n_] := n*DivisorSum[n, LiouvilleLambda[#]/# &]; fQ[n_] := Block[{p = FactorInteger[n][[1, 1]]}, PrimeQ[ rho[p n]]]; mx = 10^9; lst = Sort@ Flatten@ Table[ Prime[n]^e, {n, PrimePi[mx^(1/3)]}, {e, 3, Floor@ Log[ Prime@ n, mx], 2}]; Select[lst, fQ] (* _Robert G. Wilson v_, Jan 07 2018 *)

%o (PARI) rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s;

%o lista(nn) = {for (n=1, nn, if ((e = isprimepower(n,&p)) && (e > 1) && (e % 2) && isprime(rhope(p,e+1)), print1(n, ", ");););}

%Y Cf. A065508, A074268, A206369.

%K nonn

%O 1,1

%A _Michel Marcus_, Jan 07 2018