login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 3 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
2

%I #7 Mar 22 2018 12:41:59

%S 1,7,15,19,21,33,53,77,111,171,269,415,643,1013,1605,2543,4041,6451,

%T 10325,16547,26561,42705,68741,110743,178545,288053,464971,750861,

%U 1212959,1960023,3167961,5121325,8280457,13390095,21655079,35024669

%N Number of n X 3 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

%C Column 3 of A297858.

%H R. H. Hardin, <a href="/A297853/b297853.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) - a(n-4) - a(n-5) - a(n-6) + a(n-7) + a(n-8) for n>9.

%F Empirical g.f.: x*(1 + 5*x + x^2 - 11*x^3 - 16*x^4 - x^5 + 10*x^6 + 11*x^7 + 4*x^8) / ((1 - x)*(1 + x^2)*(1 - x - x^2)*(1 - x^2 - x^3)). - _Colin Barker_, Mar 22 2018

%e Some solutions for n=7:

%e ..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..0. .0..0..1. .0..0..1

%e ..1..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..1. .1..1..1. .0..1..1

%e ..0..1..0. .0..1..0. .1..1..1. .0..1..0. .1..0..0. .1..0..0. .0..0..0

%e ..1..1..0. .0..1..1. .1..0..0. .0..1..0. .1..0..0. .1..1..1. .1..1..0

%e ..1..1..0. .0..1..1. .1..1..0. .0..1..0. .1..0..1. .0..0..1. .0..0..0

%e ..0..1..0. .0..1..0. .0..0..0. .0..1..0. .0..1..0. .1..1..1. .0..1..1

%e ..1..0..1. .1..0..1. .0..1..1. .0..1..0. .1..0..1. .1..0..0. .0..0..1

%Y Cf. A297858.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 07 2018