%I #4 Jan 06 2018 10:57:45
%S 5,573,1114,4306,14237,46701,146530,456814,1433279,4501076,14136685,
%T 44497190,140143464,441400791,1390241695,4379846806,13801547551,
%U 43497337265,137100786459,432178740943,1362480439721,4295731507860
%N Number of nX6 0..1 arrays with every element equal to 1, 2 or 3 king-move adjacent elements, with upper left element zero.
%C Column 6 of A297823.
%H R. H. Hardin, <a href="/A297821/b297821.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A297821/a297821.txt">Empirical recurrence of order 98</a>
%F Empirical recurrence of order 98 (see link above)
%e Some solutions for n=7
%e ..0..0..1..0..0..1. .0..0..1..1..1..0. .0..0..1..0..1..1. .0..1..0..0..1..0
%e ..0..1..0..1..0..1. .0..1..0..0..1..0. .0..1..1..0..0..0. .0..1..0..1..0..1
%e ..0..1..0..1..0..1. .0..1..1..0..1..0. .1..0..0..1..1..1. .0..1..0..1..0..1
%e ..1..1..0..1..0..1. .0..0..1..0..1..1. .0..1..1..0..0..0. .1..1..0..1..0..1
%e ..0..1..0..1..0..0. .1..0..1..0..0..1. .1..0..0..1..1..0. .0..1..0..1..0..1
%e ..0..1..0..1..0..1. .1..0..1..1..1..0. .0..1..1..0..0..1. .1..0..0..1..1..0
%e ..0..0..1..0..1..1. .0..1..0..0..0..0. .1..0..0..1..1..1. .1..1..1..0..0..0
%Y Cf. A297823.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 06 2018