login
Number of nX5 0..1 arrays with every element equal to 1, 2 or 3 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 06 2018 10:56:26

%S 3,166,399,1395,4444,14237,43931,134395,412427,1268252,3904488,

%T 12035011,37073205,114147345,351479919,1082415552,3333611748,

%U 10266940149,31619860897,97381441665,299912849035,923670230344,2844725104582

%N Number of nX5 0..1 arrays with every element equal to 1, 2 or 3 king-move adjacent elements, with upper left element zero.

%C Column 5 of A297823.

%H R. H. Hardin, <a href="/A297820/b297820.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) -12*a(n-2) +11*a(n-3) -24*a(n-5) +48*a(n-6) -119*a(n-7) +168*a(n-8) -132*a(n-9) +31*a(n-10) +127*a(n-11) -446*a(n-12) +750*a(n-13) -732*a(n-14) +777*a(n-15) -139*a(n-16) -357*a(n-17) +864*a(n-18) -1281*a(n-19) +1770*a(n-20) -1373*a(n-21) +1071*a(n-22) -212*a(n-23) -1440*a(n-24) -622*a(n-25) -1426*a(n-26) +2007*a(n-27) -475*a(n-28) +389*a(n-29) -705*a(n-30) -1814*a(n-31) +106*a(n-32) +727*a(n-33) +837*a(n-34) +1338*a(n-35) +994*a(n-36) +473*a(n-37) +246*a(n-38) -150*a(n-39) -417*a(n-40) -458*a(n-41) -254*a(n-42) -226*a(n-43) -110*a(n-44) -14*a(n-45) +28*a(n-46) +12*a(n-47) +8*a(n-48) +8*a(n-49) for n>55

%e Some solutions for n=7

%e ..0..1..1..0..1. .0..1..0..0..1. .0..1..1..0..1. .0..1..1..0..0

%e ..0..1..0..1..0. .0..1..0..1..0. .1..0..0..0..1. .0..0..0..1..1

%e ..0..1..0..1..0. .0..1..0..1..0. .0..1..1..1..1. .1..1..1..0..0

%e ..1..1..0..1..0. .1..0..1..0..1. .0..0..0..0..0. .0..0..1..0..1

%e ..0..1..0..1..0. .1..0..1..0..1. .1..1..1..1..0. .1..0..1..0..1

%e ..0..1..0..1..1. .1..0..1..0..1. .1..0..0..0..1. .1..0..1..0..1

%e ..0..1..0..0..1. .1..0..1..1..0. .0..1..0..1..1. .1..1..0..1..1

%Y Cf. A297823.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 06 2018