%I #4 Jan 04 2018 22:18:00
%S 1,1,1,1,2,1,1,8,3,1,1,15,17,4,1,1,32,34,39,6,1,1,61,92,93,151,9,1,1,
%T 145,223,362,502,385,13,1,1,297,700,1103,2719,1443,1026,19,1,1,658,
%U 1747,4795,11341,11171,4676,3272,28,1,1,1352,4931,15646,82549,65215,53173,19601
%N T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 2 or 4 neighboring 1s.
%C Table starts
%C .1..1....1.....1.......1........1.........1...........1............1
%C .1..2....8....15......32.......61.......145.........297..........658
%C .1..3...17....34......92......223.......700........1747.........4931
%C .1..4...39....93.....362.....1103......4795.......15646........61063
%C .1..6..151...502....2719....11341.....82549......396787......2346541
%C .1..9..385..1443...11171....65215....673171.....4414693.....36515720
%C .1.13.1026..4676...53173...414651...6241242....56834907....675663465
%C .1.19.3272.19601..304157..3199929..74469526...959915987..16537401517
%C .1.28.8945.62749.1417699.21221319.718454750.13045679082.322119198752
%H R. H. Hardin, <a href="/A297733/b297733.txt">Table of n, a(n) for n = 1..220</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = a(n-1) +a(n-3)
%F k=3: a(n) = a(n-1) +a(n-2) +13*a(n-3) -2*a(n-4) +4*a(n-5) -11*a(n-6) -3*a(n-7) -a(n-8)
%F k=4: [order 19]
%F k=5: [order 35]
%F Empirical for row n:
%F n=1: a(n) = a(n-1)
%F n=2: a(n) = 2*a(n-1) +a(n-2) -3*a(n-3) +6*a(n-4) -6*a(n-5)
%F n=3: [order 9]
%F n=4: [order 27]
%F n=5: [order 80]
%e Some solutions for n=6 k=4
%e ..0..0..0..0. .0..1..1..1. .0..0..0..0. .0..0..1..0. .0..0..1..1
%e ..0..0..0..0. .0..0..1..0. .0..0..1..1. .0..1..0..1. .0..0..1..1
%e ..0..0..1..1. .0..1..1..1. .0..1..1..0. .0..0..1..1. .0..0..0..0
%e ..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..1..0. .0..0..0..0
%e ..0..1..0..1. .0..0..1..1. .0..1..1..0. .0..0..0..0. .0..0..1..1
%e ..0..0..1..0. .0..0..1..1. .1..1..0..0. .0..0..0..0. .0..1..1..0
%Y Column 2 is A000930(n+1).
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Jan 04 2018