login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of 4Xn 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 0, 1 or 3 neighboring 1s.
1

%I #4 Jan 01 2018 14:55:40

%S 16,106,953,6413,49198,368007,2781983,20760904,155877622,1169298420,

%T 8774376759,65804658731,493649477081,3703114934662,27779195236004,

%U 208382324834711,1563175568610503,11726117006881525,87963141550618932

%N Number of 4Xn 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 0, 1 or 3 neighboring 1s.

%C Row 4 of A297607.

%H R. H. Hardin, <a href="/A297610/b297610.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +23*a(n-2) +72*a(n-3) +429*a(n-4) +561*a(n-5) -800*a(n-6) -197*a(n-7) -3464*a(n-8) -3732*a(n-9) +16662*a(n-10) -9202*a(n-11) -60068*a(n-12) +49640*a(n-13) +96401*a(n-14) -135437*a(n-15) -55052*a(n-16) +244878*a(n-17) +36*a(n-18) -292197*a(n-19) +155850*a(n-20) +404250*a(n-21) -152837*a(n-22) -453526*a(n-23) -102914*a(n-24) +219408*a(n-25) +94484*a(n-26) -19094*a(n-27) -35125*a(n-28) -17407*a(n-29) +3583*a(n-30) +4202*a(n-31) +1102*a(n-32) +108*a(n-33) -64*a(n-34)

%e Some solutions for n=5

%e ..1..0..1..0..1. .1..0..0..0..0. .0..0..0..0..0. .0..0..1..0..0

%e ..1..0..1..0..0. .0..0..1..1..1. .0..0..0..1..0. .1..0..0..0..0

%e ..1..0..0..0..1. .0..0..0..0..1. .0..1..0..0..1. .1..0..0..1..1

%e ..1..0..0..1..0. .0..0..1..0..0. .0..0..0..0..1. .1..0..1..0..1

%Y Cf. A297607.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 01 2018