login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 4 neighboring 1s.
1

%I #4 Jan 01 2018 11:09:47

%S 6,39,188,1017,5800,31171,171543,945046,5175491,28425138,156104665,

%T 856754888,4703782455,25823973877,141766379306,778286514143,

%U 4272707870336,23456587740397,128773952953874,706953473963971

%N Number of nX5 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 4 neighboring 1s.

%C Column 5 of A297582.

%H R. H. Hardin, <a href="/A297579/b297579.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +8*a(n-2) +65*a(n-3) +24*a(n-4) -109*a(n-5) -708*a(n-6) -460*a(n-7) +1188*a(n-8) +1178*a(n-9) +1813*a(n-10) -509*a(n-11) -2484*a(n-12) -3623*a(n-13) -998*a(n-14) +974*a(n-15) +4136*a(n-16) +3611*a(n-17) +746*a(n-18) -1268*a(n-19) -2677*a(n-20) -2205*a(n-21) -330*a(n-22) +30*a(n-23) +347*a(n-24) +205*a(n-25) -45*a(n-26) +46*a(n-27) +66*a(n-28) +8*a(n-29) -8*a(n-30)

%e Some solutions for n=7

%e ..0..1..0..1..0. .0..0..0..0..0. .0..0..0..0..1. .0..0..1..0..0

%e ..0..0..1..1..0. .1..1..0..0..0. .0..0..0..1..0. .0..0..0..1..0

%e ..1..0..0..1..0. .0..0..0..0..0. .0..0..0..0..0. .0..1..0..1..0

%e ..0..1..0..1..0. .0..1..1..0..0. .1..0..0..0..0. .0..1..1..1..0

%e ..0..0..0..0..1. .0..0..0..0..0. .0..1..0..0..0. .0..0..0..0..0

%e ..0..1..0..0..1. .0..1..0..0..1. .0..0..0..0..0. .0..0..1..0..0

%e ..1..0..0..1..0. .1..0..0..1..0. .0..0..0..1..1. .0..1..0..0..0

%Y Cf. A297582.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 01 2018