login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of maximum matchings in the n-Sierpinski sieve graph.
1

%I #9 Jul 21 2024 10:53:44

%S 3,2,144,8192,69269232549888,2658455991569831745807614120560689152,

%T 20629598047085351073781197562197536448467995509610681744292843893938924076606720567385132001811808287432516829184

%N Number of maximum matchings in the n-Sierpinski sieve graph.

%H Christian Sievers, <a href="/A297532/b297532.txt">Table of n, a(n) for n = 1..9</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximumIndependentEdgeSet.html">Maximum Independent Edge Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiSieveGraph.html">Sierpinski Sieve Graph</a>

%o (PARI) rd(p)=if(p,pollead(p)*x^poldegree(p),0);

%o a(n)={my(s=[1,0,x,0]);for(k=2,n,s=vector(4,i,sum(xy=0,2,sum(xz=0,2,sum(yz=0,2,rd(s[1+(i>1)+(xy%2)+(xz%2)]*s[1+(i>2)+(xy\2)+(yz%2)]*s[1+(i>3)+(xz\2)+(yz\2)]))))));pollead([1,3,3,1]*s~)} \\ _Christian Sievers_, Jul 21 2024

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Dec 31 2017

%E a(5) and beyond from _Christian Sievers_, Jul 21 2024