Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 31 2017 07:28:36
%S 1,2,1,4,10,1,7,31,29,1,12,68,110,87,1,21,218,314,531,280,1,37,729,
%T 1829,2281,2534,876,1,65,2097,8803,23348,14201,11405,2735,1,114,6139,
%U 34757,191192,270845,88808,53175,8583,1,200,18932,157673,1247716,3624914
%N T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 2 neighboring 1s.
%C Table starts
%C .1.....2.......4........7.........12...........21.............37
%C .1....10......31.......68........218..........729...........2097
%C .1....29.....110......314.......1829.........8803..........34757
%C .1....87.....531.....2281......23348.......191192........1247716
%C .1...280....2534....14201.....270845......3624914.......35049871
%C .1...876...11405....88808....3075264.....66289769......978288822
%C .1..2735...53175...573119...35919085...1272836591....28914051279
%C .1..8583..246040..3613793..414559944..23896899569...823340493402
%C .1.26900.1135117.22999331.4794512057.450529429259.23748019543354
%H R. H. Hardin, <a href="/A297506/b297506.txt">Table of n, a(n) for n = 1..242</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 2*a(n-1) +2*a(n-2) +5*a(n-3) -a(n-5) -a(n-6)
%F k=3: [order 11]
%F k=4: [order 18]
%F k=5: [order 50]
%F Empirical for row n:
%F n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
%F n=2: a(n) = 3*a(n-1) -2*a(n-2) +9*a(n-3) -6*a(n-4) -8*a(n-5)
%F n=3: [order 10]
%F n=4: [order 24]
%F n=5: [order 59]
%e Some solutions for n=4 k=4
%e ..1..1..1..1. .0..0..0..0. .0..0..1..0. .1..0..0..0. .0..0..0..0
%e ..0..0..0..0. .0..0..1..1. .0..0..0..1. .0..1..0..0. .0..0..0..0
%e ..1..0..0..0. .0..0..0..1. .0..0..1..0. .0..0..0..1. .0..0..0..1
%e ..1..1..0..0. .1..1..0..0. .1..1..0..0. .0..1..1..0. .0..0..1..1
%Y Column 2 is A295525.
%Y Row 1 is A005251(n+2).
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Dec 31 2017