%I #12 May 12 2018 21:30:17
%S 1,4,8,11,14,18,21,24,28,31,34,38,41,44,48,51,54,58,61,64,68,71,74,78,
%T 81,84,88,91,94,98,101,104,108,111,114,118,121,124,128,131,134,138,
%U 141,144,148,151,154,158,161,164,168,171,174,178,181,184,188,191
%N Solution (a(n)) of the system of 4 complementary equations in Comments.
%C Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:
%C a(n) = least new;
%C b(n) = least new;
%C c(n) = least new;
%C d(n) = a(n) + b(n) + c(n);
%C where "least new k" means the least positive integer not yet placed.
%C ***
%C Conjecture: for all n >= 0,
%C 0 <= 10n - 6 - 3 a(n) <= 2
%C 0 <= 10n - 2 - 3 b(n) <= 3
%C 0 <= 10n + 1 - 3 c(n) <= 3
%C 0 <= 10n - 3 - d(n) <= 2
%C ***
%C The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A075326, the "anti-Fibonacci sequence." See A299409 for the "anti-tetranacci" sequences.
%H Clark Kimberling, <a href="/A297464/b297464.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = a(n-1) + a(n-3) - a(n-4) (conjectured).
%F d(n) = A275389(n) for n >= 0.
%e n: 0 1 2 3 4 5 6 7 8 9
%e a: 1 4 8 11 14 18 21 24 28 31
%e b: 2 5 9 12 15 19 22 25 29 32
%e c: 3 7 10 13 17 20 23 26 30 33
%e d: 6 16 27 36 46 57 66 75 87 96
%t z = 400;
%t mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
%t a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]];
%t Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]],
%t AppendTo[b, mex[Flatten[{a, b, c, d}], 1]],
%t AppendTo[c, mex[Flatten[{a, b, c, d}], 1]],
%t AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}];
%t Take[a, 100] (* A297464 *)
%t Take[b, 100] (* A297465 *)
%t Take[c, 100] (* A297466 *)
%t Take[d, 100] (* A265389 *)
%Y Cf. A036554, A299634, A297465, A297466, A265389.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Apr 19 2018