Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Apr 25 2018 08:32:51
%S 1,4,5,9,12,13,16,17,21,22,27,28,31,32,37,38,41,44,47,48,51,52,57,58,
%T 61,62,67,68,71,72,77,78,81,84,85,89,90,93,97,98,101,104,107,108,111,
%U 112,117,118,121,122,127,128,131,132,137,138,141,144,147,148
%N Solution (a(n)) of the system of 3 complementary equations in Comments.
%C Define sequences a(n), b(n), c(n) recursively:
%C a(n) = least new;
%C b(n) = least new > = a(n) + 2;
%C c(n) = a(n) + b(n) - 2;
%C where "least new k" means the least positive integer not yet placed.
%C ***
%C The sequences a,b,c partition the positive integers.
%C ***
%C Conjectures: for n >=0,
%C 0 <= 5*n + 4 - 2*a(n) <= 5,
%C 0 <= 5*n + 8 - 2*b(n) <= 4,
%C 0 <= c(n) - 5n <= 4.
%H Clark Kimberling, <a href="/A297291/b297291.txt">Table of n, a(n) for n = 0..1000</a>
%e n: 0 1 2 3 4 5 6 7 8 9 10
%e a: 1 4 5 9 12 13 16 17 21 27 28
%e b: 3 6 7 11 14 15 19 20 23 25 29
%e c: 2 8 10 18 24 26 33 35 42 45 54
%t z = 300;
%t mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
%t a = b = c = {};
%t Do[{AppendTo[a,
%t mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]],
%t AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + 2]],
%t AppendTo[c, Last[a] + Last[b] - 2]}, {z}];
%t Take[a, 100] (* A297291 *)
%t Take[b, 100] (* A297292 *)
%t Take[c, 100] (* A297293 *)
%t (* _Peter J. C. Moses_, Apr 23 2018 *)
%Y Cf. A299634, A297292, A297293.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Apr 24 2018