login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4Xn 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 neighboring 1s.
1

%I #4 Dec 27 2017 15:39:30

%S 1,19,68,207,997,4210,16658,68769,284867,1170146,4807394,19787328,

%T 81424284,334903296,1377738399,5668140481,23317788357,95926011656,

%U 394630220291,1623463820564,6678736090662,27475550500449,113031264492453

%N Number of 4Xn 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 neighboring 1s.

%C Row 4 of A297224.

%H R. H. Hardin, <a href="/A297226/b297226.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-2) +29*a(n-3) +66*a(n-4) +121*a(n-5) +83*a(n-6) -a(n-7) -205*a(n-8) -224*a(n-9) +30*a(n-10) +473*a(n-11) -96*a(n-12) -289*a(n-13) -109*a(n-14) -3*a(n-15) +126*a(n-16) +160*a(n-17) -150*a(n-18) -112*a(n-19) +43*a(n-20) +124*a(n-21) -53*a(n-22) +3*a(n-23) -25*a(n-24) +6*a(n-25) -a(n-26) +a(n-27)

%e Some solutions for n=7

%e ..0..1..0..1..0..0..0. .0..0..0..0..0..0..0. .1..1..0..0..1..1..0

%e ..1..0..1..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0

%e ..0..0..0..0..0..0..1. .0..0..1..1..0..0..0. .0..0..1..1..0..1..1

%e ..0..0..1..1..0..1..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0

%Y Cf. A297224.

%K nonn

%O 1,2

%A _R. H. Hardin_, Dec 27 2017