login
Irregular triangle read by rows: rows are partial alternating sums of rows of A297191.
2

%I #11 Mar 04 2018 14:34:20

%S 1,1,4,1,1,8,17,8,1,1,12,49,80,49,12,1,1,16,97,280,401,280,97,16,1,1,

%T 20,161,672,1569,2084,1569,672,161,20,1,1,24,241,1320,4321,8752,11073,

%U 8752,4321,1320,241,24,1,1,28,337,2288,9681,26684,48833,59712,48833,26684,9681

%N Irregular triangle read by rows: rows are partial alternating sums of rows of A297191.

%H I. Sugai, <a href="/A007401/a007401_7.pdf">Numerical solutions of Laplace's Equation, given Cauchy conditions</a>, IBM Journal 3 (1959), 187-188. (Annotated scanned copy.) A signed version of the triangle appears on page 188, but the signs are not important.

%e Triangle begins:

%e 1,

%e 1,4,1,

%e 1,8,17,8,1,

%e 1,12,49,80,49,12,1,

%e 1,16,97,280,401,280,97,16,1,

%e 1,20,161,672,1569,2084,1569,672,161,20,1,

%e ...

%p A297191x := proc(n,k)

%p A008288(2*n+1,k) ;

%p end proc:

%p A297193 := proc(n,k)

%p add((-1)^(i+1)*A297191x(n,i),i=0..k) ;

%p abs(%) ;

%p end proc:

%p seq(seq(A297193(n,k),k=0..2*n),n=0..10) ; # _R. J. Mathar_, Mar 04 2018

%Y Cf. A008288, A297191, A297194.

%Y The middle and next to middle columns are A089165 and A089383.

%K nonn,tabf

%O 0,3

%A _N. J. A. Sloane_, Jan 10 2018