login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference between A156552 and its Moebius transform: a(n) = A156552(n) - A297112(n).
10

%I #24 Mar 24 2018 18:53:21

%S 0,0,0,1,0,3,0,3,2,5,0,7,0,9,6,7,0,9,0,11,10,17,0,15,4,33,6,19,0,17,0,

%T 15,18,65,12,19,0,129,34,23,0,29,0,35,14,257,0,31,8,17,66,67,0,21,20,

%U 39,130,513,0,35,0,1025,22,31,36,53,0,131,258,33,0,39,0,2049,18,259,24,101,0,47,14,4097,0,59,68,8193,514,71,0,37,40

%N Difference between A156552 and its Moebius transform: a(n) = A156552(n) - A297112(n).

%H Antti Karttunen, <a href="/A297168/b297168.txt">Table of n, a(n) for n = 1..8192</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = -Sum_{d|n, d<n} A008683(n/d)*A156552(d).

%F a(n) = Sum_{d|n, d<n} A297112(d).

%F For n > 1, a(n) = Sum_{d|n, 1<d<n} 2^A033265(A156552(d)).

%F a(n) = A156552(n) - A297112(n).

%F a(1) = 0, for n > 1, a(n) = A156552(n) - 2^A297167(n).

%t With[{s = Array[Total@ MapIndexed[#1 2^(First@ #2 - 1) &, Flatten@ Map[ConstantArray[2^(PrimePi@ #1 - 1), #2] & @@ # &, FactorInteger@ #]] - Boole[# == 1]/2 &, 91]}, Table[-DivisorSum[n, MoebiusMu[n/#] s[[#]] &, # < n &], {n, Length@ s}]] (* _Michael De Vlieger_, Mar 13 2018 *)

%o (PARI)

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));

%o A297112(n) = sumdiv(n,d,moebius(n/d)*A156552(d));

%o A297168(n) = (A156552(n)-A297112(n));

%o \\ Or alternatively as:

%o A297168(n) = -sumdiv(n,d,(d<n)*moebius(n/d)*A156552(d));

%o (PARI)

%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));

%o A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));

%o A297112(n) = if(1==n,0,2^A297167(n));

%o A297168(n) = sumdiv(n,d,(d<n)*A297112(d)); \\ _Antti Karttunen_, Mar 13 2018

%o (Scheme)

%o (define (A297168 n) (- (A156552 n) (A297112 n)))

%o (define (A297168 n) (if (= 1 n) 0 (- (A156552 n) (A000079 (A297167 n)))))

%Y Cf. A008683, A033265, A156552, A297112, A297112, A297113, A297167, A297169, A300827.

%K nonn

%O 1,6

%A _Antti Karttunen_, Feb 27 2018