login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297086
a(n) = 1 if gcd(n, phi(n)) == 1 otherwise 0.
4
1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0
OFFSET
1
COMMENTS
Characteristic function of A003277. - Iain Fox, Dec 25 2017
LINKS
Eric Weisstein's World of Mathematics, Totient Function
FORMULA
For even n > 2, a(n) = 0. - Iain Fox, Dec 25 2017
If n is in A013929 then a(n) = 0. - David A. Corneth, Dec 25 2017
a(n) = [gcd(n,phi(n)) = 1], where [ ] is the Iverson Bracket. - Wesley Ivan Hurt, Jan 20 2024
EXAMPLE
gcd(5, phi(5)) = gcd(5, 4) = 1, so a(5) = 1.
gcd(6, phi(6)) = gcd(6, 2) = 2, so a(6) = 0.
MATHEMATICA
Table[KroneckerDelta[GCD[n, EulerPhi[n]], 1], {n, 100}] (* Wesley Ivan Hurt, Jan 20 2024 *)
PROG
(PARI) {a(n) = gcd(n, eulerphi(n))==1}
CROSSREFS
Sequence in context: A080339 A294905 A353787 * A349920 A369253 A167752
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 25 2017
STATUS
approved