The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297064 Number of maximal matchings in the n-dipyramidal graph. 1
 2, 4, 12, 14, 40, 56, 112, 178, 306, 482, 792, 1214, 1924, 2914, 4470, 6706, 10064, 14924, 22078, 32382, 47376, 68862, 99820, 144002, 207150, 296896, 424386, 604802, 859850, 1219352, 1725460, 2436322, 3433452, 4829532, 6781600, 9506810, 13306606, 18597506, 25956060, 36177962 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Extended to a(1) using the recurrence. LINKS Eric Weisstein's World of Mathematics, Dipyramidal Graph Eric Weisstein's World of Mathematics, Matching Eric Weisstein's World of Mathematics, Maximal Independent Edge Set Index entries for linear recurrences with constant coefficients, signature (0, 5, 3, -10, -12, 7, 18, 4, -11, -8, 1, 3, 1). FORMULA a(n) = 5*a(n-2) + 3*a(n-3) - 10*a(n-4) - 12*a(n-5) + 7*a(n-6) + 18*a(n-7) + 4*a(n-8) - 11*a(n-9) - 8*a(n-10) + a(n-11) + 3*a(n-12) + a(n-13). G.f.: -2*(1 + 2*x + x^2 - 6*x^3 - 6*x^4 + 7*x^5 + 12*x^6 - x^7 - 9*x^8 - 6 x^9 + 2 x^11 + x^12)/((-1 + x^2)^2*(-1 + x^2 + x^3)^3). MATHEMATICA LinearRecurrence[{0, 5, 3, -10, -12, 7, 18, 4, -11, -8, 1, 3, 1}, {2, 4, 12, 14, 40, 56, 112, 178, 306, 482, 792, 1214, 1924}, 20] CoefficientList[Series[-2 (1 + 2 x + x^2 - 6 x^3 - 6 x^4 + 7 x^5 + 12 x^6 - x^7 - 9 x^8 - 6 x^9 + 2 x^11 + x^12)/((-1 + x^2)^2 (-1 + x^2 + x^3)^3), {x, 0, 20}], x] CROSSREFS Sequence in context: A111069 A107295 A039564 * A263466 A106135 A067268 Adjacent sequences:  A297061 A297062 A297063 * A297065 A297066 A297067 KEYWORD nonn AUTHOR Eric W. Weisstein, Jun 18 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 18:50 EDT 2021. Contains 343900 sequences. (Running on oeis4.)