%I #4 Dec 23 2017 15:03:03
%S 1,4,14,46,150,590,2355,9521,39410,163110,680680,2847658,11910305,
%T 49901827,209178469,876800876,3676299398,15416057028,64644686369,
%U 271089072107,1136852511852,4767556349396,19993574426109,83847092409163
%N Number of nX4 0..1 arrays with each 1 adjacent to 3, 4 or 6 king-move neighboring 1s.
%C Column 4 of A297020.
%H R. H. Hardin, <a href="/A297016/b297016.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +10*a(n-2) +49*a(n-3) -15*a(n-4) -377*a(n-5) -1117*a(n-6) -280*a(n-7) +5137*a(n-8) +13713*a(n-9) +9081*a(n-10) -31750*a(n-11) -91716*a(n-12) -85287*a(n-13) +87442*a(n-14) +337367*a(n-15) +357591*a(n-16) -75649*a(n-17) -671868*a(n-18) -665349*a(n-19) -7048*a(n-20) +516175*a(n-21) +17434*a(n-22) -591120*a(n-23) +593940*a(n-24) +2931484*a(n-25) +3120651*a(n-26) -1447621*a(n-27) -6700012*a(n-28) -7083886*a(n-29) +314634*a(n-30) +8069951*a(n-31) +7740352*a(n-32) +735592*a(n-33) -5968426*a(n-34) -4257926*a(n-35) +952578*a(n-36) +2302610*a(n-37) +241946*a(n-38) -949343*a(n-39) -680127*a(n-40) -202788*a(n-41) +70439*a(n-42) +146352*a(n-43) +29799*a(n-44) -23202*a(n-45) -16500*a(n-46) -4552*a(n-47) +3520*a(n-48)
%e Some solutions for n=7
%e ..1..1..0..0. .0..1..1..0. .0..1..1..1. .0..1..1..0. .0..0..1..1
%e ..1..1..0..0. .0..1..1..0. .1..0..1..1. .1..1..1..0. .0..0..1..1
%e ..0..0..1..0. .0..0..1..0. .1..1..1..0. .1..0..1..0. .0..0..1..0
%e ..0..1..1..0. .0..0..1..1. .1..1..0..0. .0..1..0..0. .0..1..0..0
%e ..1..0..1..0. .0..0..0..1. .0..1..1..1. .0..0..1..0. .1..1..1..0
%e ..1..1..1..0. .0..0..1..1. .1..1..1..1. .0..1..1..1. .0..1..0..0
%e ..1..1..0..0. .0..0..1..1. .1..1..0..0. .0..0..1..0. .0..0..0..0
%Y Cf. A297020.
%K nonn
%O 1,2
%A _R. H. Hardin_, Dec 23 2017