Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Apr 15 2024 05:31:43
%S 3,5,23,31,37,47,53,59,67,71,89,97,103,113,137,157,163,179,181,191,
%T 199,223,229,251,257,269,311,313,317,331,353,367,379,383,389,397,401,
%U 419,421,433,443,449,463,467,487,499,509,521,577,587,599,617,619,631,641,643,647,653,661,683,691,709,719
%N Rational primes that decompose in the quadratic field Q(sqrt(-11)).
%C Primes that are 1, 3, 5, 9, or 15 mod 22. - _Charles R Greathouse IV_, Mar 18 2018
%C (Which means: union of A141849, A141850, A141852, A141856 and A141851. - _R. J. Mathar_, Apr 15 2024)
%D Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
%H Robert Israel, <a href="/A296920/b296920.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>
%F a(n) ~ 2n log n. - _Charles R Greathouse IV_, Mar 18 2018
%p # In the quadratic field Q(sqrt(D)), for squarefree D<0, compute lists of:
%p # rational primes that decompose (SD),
%p # rational primes that are inert (SI),
%p # primes p such that D is a square mod p (QR), and
%p # primes p such that D is a nonsquare mod p (NR),
%p # omitting the latter if it is the same as the inert primes.
%p # Consider first M primes p.
%p # Reference: Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
%p with(numtheory):
%p HH := proc(D,M)
%p local SD,SI,QR,NR,p,q,i,t1;
%p # if D >= 0 then error("D must be negative"); fi;
%p if not issqrfree(D) then
%p error("D must be squarefree");
%p end if;
%p q:=-D;
%p SD:=[]; SI:=[]; QR:=[]; NR:=[];
%p if (D mod 8) = 1 then
%p SD:=[op(SD),2];
%p end if;
%p if (D mod 8) = 5 then
%p SI:=[op(SI),2];
%p end if;
%p for i from 2 to M do
%p p:=ithprime(i);
%p if (D mod p) <> 0 and legendre(D,p)=1 then
%p SD:=[op(SD),p];
%p end if;
%p if (D mod p) <> 0 and legendre(D,p)=-1 then
%p SI:=[op(SI),p];
%p end if;
%p end do;
%p for i from 1 to M do
%p p:=ithprime(i);
%p if legendre(D,p) >= 0 then
%p QR:=[op(QR),p];
%p else
%p NR:=[op(NR),p];
%p end if;
%p end do:
%p lprint("Primes that decompose:", SD);
%p lprint("Inert primes:", SI);
%p lprint("Primes p such that Legendre(D,p) = 0 or 1: ", QR);
%p if SI <> NR then
%p lprint("Note: SI <> NR here!");
%p lprint("Primes p such that Legendre(D,p) = -1: ", NR);
%p end if;
%p end proc:
%p HH(-11,200); # produces the present sequence (A296920), A191060, and A056874.
%t Reap[For[p = 2, p < 1000, p = NextPrime[p], If[KroneckerSymbol[-11, p] == 1, Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Apr 29 2019 *)
%o (PARI) list(lim)=my(v=List()); forprime(p=2,lim, if(kronecker(-11,p)==1, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Mar 18 2018
%Y Cf. A191060, A056874.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_, Dec 25 2017