|
|
A296915
|
|
Primes that are not squares mod 163.
|
|
1
|
|
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 59, 67, 73, 79, 89, 101, 103, 107, 109, 127, 137, 139, 149, 157, 181, 191, 193, 211, 229, 233, 239, 241, 257, 269, 271, 277, 283, 293, 311, 317, 331, 337, 349, 353, 389, 401, 431, 433, 443, 449, 463, 467, 479, 491, 509, 521, 541
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Inert rational primes in Q(sqrt -163). (Note that 41 is not inert in this field, it decomposes - see A296921.)
|
|
REFERENCES
|
Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
|
|
LINKS
|
Table of n, a(n) for n=1..59.
Index to sequences related to decomposition of primes in quadratic fields
|
|
MAPLE
|
Load the Maple program HH given in A296920. Then run HH(-163, 200); - N. J. A. Sloane, Dec 26 2017
|
|
PROG
|
(PARI) lista(nn) = forprime(p=2, nn, if (!issquare(Mod(p, 163)), print1(p, ", ")); ); \\ Michel Marcus, Dec 24 2017
|
|
CROSSREFS
|
Sequence in context: A211654 A038612 A012883 * A171032 A171045 A222566
Adjacent sequences: A296912 A296913 A296914 * A296916 A296917 A296918
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ed Pegg Jr, Dec 22 2017
|
|
EXTENSIONS
|
Corrected by N. J. A. Sloane, Dec 25 2017 (including deletion of incorrect comments in CROSS-REFERENCES)
|
|
STATUS
|
approved
|
|
|
|