%I #18 Jan 21 2023 02:59:38
%S 3601,3602,3603,3604,3605,3606,3607,3608,3609,3610,3611,3612,3613,
%T 3614,3615,3616,3617,3618,3619,3620,3621,3622,3623,3624,3625,3626,
%U 3627,3628,3629,3630,3631,3632,3633,3634,3635,3636,3637,3638,3639,3640,3641,3642,3643
%N Numbers whose base-60 digits d(m), d(m-1), ..., d(0) have #(pits) > #(peaks); see Comments.
%C A pit is an index i such that d(i-1) > d(i) < d(i+1); a peak is an index i such that d(i-1) < d(i) > d(i+1). The sequences A296906..A296908 partition the natural numbers. See the guides at A296712 and A296882.
%H Clark Kimberling, <a href="/A296907/b296907.txt">Table of n, a(n) for n = 1..10000</a>
%e The base-60 digits of 26143262 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so 26143262 is in the sequence.
%t z = 200; b = 60;
%t d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
%t Select[Range [z], Count[d[#], -2] == Count[d[#], 2] &] (* A296906 *)
%t Select[Range [z], Count[d[#], -2] < Count[d[#], 2] &] (* A296907 *)
%t Select[Range [z], Count[d[#], -2] > Count[d[#], 2] &] (* A296908 *)
%Y Cf. A296882, A296712, A296906, A296908.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 12 2018