%I
%S 101,102,103,104,105,106,107,108,109,201,202,203,204,205,206,207,208,
%T 209,212,213,214,215,216,217,218,219,301,302,303,304,305,306,307,308,
%U 309,312,313,314,315,316,317,318,319,323,324,325,326,327,328,329,401,402
%N Numbers n whose base10 digits d(m), d(m1), ..., d(0) have #(pits) > #(peaks); see Comments.
%C A pit is an index i such that d(i1) > d(i) < d(i+1); a peak is an index i such that d(i1) < d(i) > d(i+1). The sequences A296882A296883 partition the natural numbers. See the guides at A296712 and A296882.
%H Clark Kimberling, <a href="/A296883/b296883.txt">Table of n, a(n) for n = 1..10000</a>
%e The base10 digits of 21212 are 2,1,2,1,2; here #(pits) = 2 and #(peaks) = 1, so that 21212 is in the sequence.
%t z = 200; b = 10;
%t d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
%t Select[Range [z], Count[d[#], 2] == Count[d[#], 2] &] (* A296882 *)
%t Select[Range [z], Count[d[#], 2] < Count[d[#], 2] &] (* A296883 *)
%t Select[Range [z], Count[d[#], 2] > Count[d[#], 2] &] (* A296884 *)
%Y Cf. A296882, A296712, A296882, A296884.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 10 2018
