%I #11 Jan 22 2023 18:58:45
%S 48,49,54,55,56,60,61,62,63,66,67,68,69,70,90,91,92,96,97,98,99,102,
%T 103,104,105,106,132,133,134,135,138,139,140,141,142,174,175,176,177,
%U 178,264,265,270,271,272,276,277,278,279,282,283,284,285,286,288,294
%N Numbers whose base6 digits d(m), d(m1), ..., d(0) have #(pits) < #(peaks); see Comments.
%C A pit is an index i such that d(i1) > d(i) < d(i+1); a peak is an index i such that d(i1) < d(i) > d(i+1). The sequences A296870A296872 partition the natural numbers. See the guides at A296882 and A296712.
%H Clark Kimberling, <a href="/A296872/b296872.txt">Table of n, a(n) for n = 1..10000</a>
%e The base6 digits of 294 are 1,2,1,0; here #(pits) = 0 and #(peaks) = 1, so 294 is in the sequence.
%t z = 200; b = 6;
%t d[n_] := Differences[Sign[Differences[IntegerDigits[n, b]]]];
%t Select[Range [z], Count[d[#], 2] == Count[d[#], 2] &] (* A296870 *)
%t Select[Range [z], Count[d[#], 2] < Count[d[#], 2] &] (* A296871 *)
%t Select[Range [z], Count[d[#], 2] > Count[d[#], 2] &] (* A296872 *)
%Y Cf. A296882, A296712, A296870, A296871.
%K nonn,base,easy
%O 1,1
%A _Clark Kimberling_, Jan 09 2018
