login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296834
T(n,k)=Number of nXk 0..1 arrays with each 1 adjacent to 0, 3 or 5 king-move neighboring 1s.
7
2, 3, 3, 5, 6, 5, 8, 14, 14, 8, 13, 31, 43, 31, 13, 21, 70, 132, 132, 70, 21, 34, 157, 402, 573, 402, 157, 34, 55, 353, 1230, 2441, 2441, 1230, 353, 55, 89, 793, 3755, 10485, 14379, 10485, 3755, 793, 89, 144, 1782, 11475, 44951, 85500, 85500, 44951, 11475, 1782, 144
OFFSET
1,1
COMMENTS
Table starts
..2....3.....5......8.......13........21.........34...........55............89
..3....6....14.....31.......70.......157........353..........793..........1782
..5...14....43....132......402......1230.......3755........11475.........35054
..8...31...132....573.....2441.....10485......44951.......192730........826498
.13...70...402...2441....14379.....85500.....508111......3017667......17931240
.21..157..1230..10485....85500....706534....5834429.....48122349.....397252886
.34..353..3755..44951...508111...5834429...67007971....768117235....8815633972
.55..793.11475.192730..3017667..48122349..768117235..12228697715..194991656916
.89.1782.35054.826498.17931240.397252886.8815633972.194991656916.4321362259224
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3)
k=3: [order 15]
k=4: [order 50]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..0..0..1
..1..0..1..1. .1..1..1..1. .0..0..1..0. .0..0..0..0. .0..1..0..0
..0..0..0..0. .1..1..1..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..0..0. .0..0..1..1. .1..0..0..1. .0..1..0..0
..0..0..1..0. .0..0..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..1
CROSSREFS
Column 1 is A000045(n+2).
Column 2 is A006356.
Sequence in context: A094585 A183322 A295918 * A242642 A178041 A181805
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 21 2017
STATUS
approved