login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x*arctan(x)) (even powers only).
2

%I #7 Dec 21 2017 06:24:18

%S 1,2,4,24,-496,36000,-3753408,556961664,-111591202560,29054584410624,

%T -9541382573767680,3858875286730168320,-1884995591107521540096,

%U 1094305223336273239449600,-744771228363250138965196800,587358379156469629707528929280

%N Expansion of e.g.f. exp(x*arctan(x)) (even powers only).

%F a(n) = (2*n)! * [x^(2*n)] exp(x*arctan(x)).

%F a(n) ~ -(-1)^n * 2^(2*n-1) * n^(2*n-1) / exp(2*n). - _Vaclav Kotesovec_, Dec 21 2017

%e exp(x*arctan(x)) = 1 + 2*x^2/2! + 4*x^4/4! + 24*x^6/6! - 496*x^8/8! + ...

%t nmax = 15; Table[(CoefficientList[Series[Exp[x ArcTan[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

%t nmax = 15; Table[(CoefficientList[Series[Exp[(I/2) x (Log[1 - I x] - Log[1 + I x])], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

%Y Cf. A002019, A009252, A009273, A010050, A102059, A166356, A259647, A293192, A296788, A296789.

%K sign

%O 0,2

%A _Ilya Gutkovskiy_, Dec 20 2017