%I
%S 7,8,9,13,14,19,32,33,34,37,38,39,43,44,49,63,64,68,69,74,94,99,132,
%T 133,134,138,139,144,157,158,159,162,163,164,168,169,174,176,177,178,
%U 179,182,183,184,187,188,189,190,191,192,193,194,195,196,197,198,199
%N Numbers n whose base5 digits d(m), d(m1), ... d(0) have #(rises) > #(falls); see Comments.
%C A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296697A296699 partition the natural numbers. See the guide at A296712.
%H Clark Kimberling, <a href="/A296698/b296698.txt">Table of n, a(n) for n = 1..10000</a>
%e The base5 digits of 199 are 1,2,4,4; here #(rises) = 2 and #(falls) = 0, so that 199 is in the sequence.
%t z = 200; b = 5; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
%t Select[Range [z], Count[d[#], 1] == Count[d[#], 1] &] (* A296697 *)
%t Select[Range [z], Count[d[#], 1] < Count[d[#], 1] &] (* A296698 *)
%t Select[Range [z], Count[d[#], 1] > Count[d[#], 1] &] (* A296699 *)
%Y Cf. A296697, A296699, A296712.
%K nonn,base
%O 1,1
%A _Clark Kimberling_, Dec 21 2017
