login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..1 arrays with each 1 adjacent to 1, 2 or 3 king-move neighboring 1s.
1

%I #7 Dec 18 2017 22:45:17

%S 7,145,1162,11478,121477,1210458,12227803,124103052,1254382781,

%T 12689916581,128420744670,1299239741961,13145213613487,

%U 133001572025151,1345666857760526,13615069768087393,137753603402933018

%N Number of nX4 0..1 arrays with each 1 adjacent to 1, 2 or 3 king-move neighboring 1s.

%C Column 4 of A296688.

%H R. H. Hardin, <a href="/A296684/b296684.txt">Table of n, a(n) for n = 1..210</a>

%H Robert Israel, <a href="/A296684/a296684.pdf">Maple-assisted proof of formula</a>

%F Empirical: a(n) = 7*a(n-1) +15*a(n-2) +181*a(n-3) -141*a(n-4) +269*a(n-5) -2149*a(n-6) -2006*a(n-7) -3785*a(n-8) -973*a(n-9) +8803*a(n-10) +516*a(n-11) -2504*a(n-12) +3529*a(n-13) -5347*a(n-14) +1719*a(n-15) +3063*a(n-16) -2485*a(n-17) -404*a(n-18) -697*a(n-19) +572*a(n-20) +47*a(n-21) +143*a(n-22) +82*a(n-23) -100*a(n-24) -10*a(n-25) +4*a(n-26).

%F Empirical formula confirmed by _Robert Israel_, Dec 18 2017: see link.

%e Some solutions for n=5

%e ..0..0..1..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..0

%e ..0..0..1..0. .0..0..1..1. .1..1..0..1. .1..0..0..0. .0..0..1..0

%e ..1..0..0..1. .0..1..0..1. .1..0..1..0. .1..0..0..1. .0..1..0..1

%e ..0..1..0..0. .1..0..0..1. .0..0..1..0. .0..0..1..0. .0..1..0..1

%e ..1..0..0..0. .1..1..1..0. .0..1..1..0. .0..1..0..1. .0..1..1..0

%Y Cf. A296688.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 18 2017