login
Number of nX4 0..1 arrays with each 1 adjacent to 0, 1 or 3 king-move neighboring 1s.
1

%I #4 Dec 17 2017 15:45:25

%S 13,85,468,3159,20782,130303,849983,5499124,35347256,228635279,

%T 1476475552,9526162672,61524431404,397230521807,2564403167359,

%U 16557684534289,106902568041821,690192741799890,4456188932450215

%N Number of nX4 0..1 arrays with each 1 adjacent to 0, 1 or 3 king-move neighboring 1s.

%C Column 4 of A296651.

%H R. H. Hardin, <a href="/A296647/b296647.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) +14*a(n-2) +79*a(n-3) -76*a(n-4) -416*a(n-5) -956*a(n-6) -474*a(n-7) +2279*a(n-8) +3884*a(n-9) +4165*a(n-10) -656*a(n-11) -3621*a(n-12) -3321*a(n-13) -1970*a(n-14) +654*a(n-15) -339*a(n-16) +359*a(n-17) +20*a(n-18) +188*a(n-19) +377*a(n-20) +44*a(n-21) +37*a(n-22)

%e Some solutions for n=6

%e ..0..0..0..1. .1..0..0..0. .0..0..1..0. .1..0..0..1. .1..0..1..0

%e ..1..1..0..1. .0..1..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..0

%e ..0..0..0..0. .1..0..0..0. .0..0..0..0. .1..0..1..1. .0..0..1..0

%e ..0..0..0..0. .0..0..1..0. .0..1..0..0. .0..0..1..1. .1..0..0..1

%e ..0..1..0..1. .0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..0

%e ..1..0..0..1. .0..0..0..0. .1..1..0..0. .0..1..0..0. .0..1..0..1

%Y Cf. A296651.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 17 2017