OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Barnes G-Function.
Wikipedia, Barnes G-function
FORMULA
a(n) = A^8 * exp(-2/3) * 3^(9*n^2/2 - 3*n + 5/12) * (2*Pi)^(1 - 3*n) * BarnesG(n) * BarnesG(n + 1/3)^2 * BarnesG(n + 2/3)^3 * BarnesG(n+1)^2 * BarnesG(n + 4/3), where A is the Glaisher-Kinkelin constant A074962.
a(n) ~ 3^(9*n^2/2 - 3*n + 5/12) * n^(9*n^2/2 - 3*n + 5/12) * (2*Pi)^((3*n-1)/2) / (A * exp(27*n^2/4 - 3*n - 1/12)), where A is the Glaisher-Kinkelin constant A074962.
MATHEMATICA
Table[BarnesG[3*n], {n, 0, 10}]
Round[Table[Glaisher^8 * E^(-2/3) * 3^(9*n^2/2 - 3*n + 5/12) * (2*Pi)^(1 - 3*n) * BarnesG[n] * BarnesG[n + 1/3]^2 * BarnesG[n + 2/3]^3 * BarnesG[n + 1]^2 * BarnesG[n + 4/3], {n, 0, 10}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 16 2017
STATUS
approved