login
A296599
T(n,k) = Number of n X k 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 1, 2 or 3 neighboring 1's.
8
1, 2, 2, 4, 11, 4, 7, 39, 39, 7, 12, 136, 228, 136, 12, 21, 494, 1441, 1441, 494, 21, 37, 1785, 9194, 16524, 9194, 1785, 37, 65, 6432, 58251, 194743, 194743, 58251, 6432, 65, 114, 23201, 370000, 2271055, 4254377, 2271055, 370000, 23201, 114, 200, 83695
OFFSET
1,2
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3)
k=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +a(n-4) +a(n-6) -a(n-7) -a(n-8)
k=3: [order 17]
k=4: [order 44]
EXAMPLE
Table starts
...1.....2........4..........7...........12..............21................37
...2....11.......39........136..........494............1785..............6432
...4....39......228.......1441.........9194...........58251............370000
...7...136.....1441......16524.......194743.........2271055..........26487173
..12...494.....9194.....194743......4254377........91004329........1952733110
..21..1785....58251....2271055.....91004329......3553672817......139547279602
..37..6432...370000...26487173...1952733110....139547279602....10046940260800
..65.23201..2348956..309059200..41935988643...5483284264255...723805695940277
.114.83695.14911425.3606151826.900218672974.215325152512080.52099265384617231
...
Some solutions for n=4, k=4
..0..0..1..0. .0..1..1..0. .0..1..1..0. .0..0..0..1. .0..1..0..0
..0..1..0..0. .0..1..0..0. .1..0..0..1. .0..0..1..1. .1..0..0..0
..1..0..1..1. .0..1..0..1. .0..1..0..1. .1..1..0..0. .1..1..1..0
..1..1..0..1. .0..0..1..0. .0..1..0..1. .0..0..0..0. .0..1..1..1
CROSSREFS
Column 1 is A005251(n+2).
Sequence in context: A295847 A296739 A218823 * A219106 A219985 A220800
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2017
STATUS
approved