%I #4 Dec 15 2017 08:49:42
%S 1,1,1,1,3,1,1,5,5,1,1,8,16,8,1,1,15,37,37,15,1,1,26,96,126,96,26,1,1,
%T 45,254,431,431,254,45,1,1,80,654,1554,2104,1554,654,80,1,1,140,1709,
%U 5601,10734,10734,5601,1709,140,1,1,245,4472,20036,53995,78660,53995,20036
%N T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 2 or 4 neighboring 1s.
%C Table starts
%C .1...1....1.....1.......1........1.........1...........1............1
%C .1...3....5.....8......15.......26........45..........80..........140
%C .1...5...16....37......96......254.......654........1709.........4472
%C .1...8...37...126.....431.....1554......5601.......20036........71722
%C .1..15...96...431....2104....10734.....53995......270584......1360373
%C .1..26..254..1554...10734....78660....560942.....3987615.....28515358
%C .1..45..654..5601...53995...560942...5705431....57470370....581613058
%C .1..80.1709.20036..270584..3987615..57470370...820373528..11761387456
%C .1.140.4472.71722.1360373.28515358.581613058.11761387456.239372827502
%H R. H. Hardin, <a href="/A296541/b296541.txt">Table of n, a(n) for n = 1..312</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = a(n-1) +2*a(n-3) +a(n-5)
%F k=3: [order 12]
%F k=4: [order 39]
%e Some solutions for n=6 k=4
%e ..0..1..0..0. .0..0..0..0. .1..1..0..0. .0..0..1..1. .0..0..0..0
%e ..1..1..1..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .0..1..1..1
%e ..0..1..1..0. .1..1..0..0. .0..0..0..0. .0..1..0..1. .0..1..1..0
%e ..0..1..0..0. .1..0..0..1. .1..1..0..1. .0..1..1..0. .1..0..1..0
%e ..1..1..1..0. .0..0..1..1. .1..0..1..1. .0..0..0..0. .1..0..1..0
%e ..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .1..1..0..0
%Y Column 2 is A193147(n+1).
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Dec 15 2017