login
Dimension of the n-th component of a certain graded Lie algebra.
0

%I #16 Nov 22 2023 12:05:05

%S 2,1,2,2,1,1,2,1,1,2,2,2,1,1,2,2,2,1,1,2,1,1,2,1,1,2,2,2,1,1,2,1,1,2,

%T 1,1,2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,2,1,1,2,1,1,2,2,2,1,1,2,2,2,1,1,2,

%U 2,2,1,1,2,1,1,2,1,1,2,2,2,1,1,2,1,1,2

%N Dimension of the n-th component of a certain graded Lie algebra.

%C Conjecture: Let b = 122112112221... be the sequence (a(n+1)), written as a word. Let mu be the morphism given by mu(1)=121, mu(2)=12221. Then b = 1221 mu(b). - _Michel Dekking_, Sep 29 2020

%H Jean-Paul Allouche and Victor Petrogradsky, <a href="https://doi.org/10.1016/j.jalgebra.2023.11.007">A conjecture of Dekking on the dimensions of the lower central series factors of a certain just infinite Lie algebra</a>, J. Algebra (2023) Vol. 639, 708-719.

%H Otto Augusto de Morais Costa and Victor Petrogradsky, <a href="https://arxiv.org/abs/1707.06614">Fractal just infinite nil Lie superalgebra of finite width</a>, arXiv:1707.06614 [math.RA], 2017, p. 21, Remark 3.

%K nonn

%O 1,1

%A _Eric M. Schmidt_, Dec 09 2017