Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 14 2017 14:29:39
%S 1,2,28,66,143,273,497,870,1488,2502,4159,6857,11241,18354,29884,
%T 48562,78807,127769,207017,335270,542816,878662,1422103,2301441,
%U 3724273,6026555,9751728,15779244,25531996,41312329,66845481,108159035,175005812,283166216
%N Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
%C The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
%C *****
%C Guide to related sequences, each determined by a complementary equation and initial values (a(0),a(1); b(0),b(1),b(2)):
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n)^2,
%C Initial values (1,2; 3,4,5): A296245
%C Initial values (1,3; 2,4,5): A296246
%C Initial values (1,4; 2,3,5): A296247
%C Initial values (2,3; 1,4,5): A296248
%C Initial values (2,4; 1,3,5): A296249
%C Initial values (3,4; 1,2,5): A296250
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)^2,
%C Initial values (1,2; 3,4): A296251
%C Initial values (1,3; 2,4): A296252
%C Initial values (1,4; 2,3): A296253
%C Initial values (2,3; 1,4): A296254
%C Initial values (2,4; 1,3): A296255
%C Initial values (3,4; 1,2): A296256
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n-2)^2,
%C Initial values (1,2; 3): A296257
%C Initial values (1,3; 2): A296258
%C Initial values (2,3; 2): A296259
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n-1)*b(n-2),
%C Initial values (1,2; 3,4): A295367
%C Initial values (1,3; 2,4): A295363
%C Initial values (1,4; 2,3): A296262
%C Initial values (2,3; 1,4): A296263
%C Initial values (2,4; 1,3): A296264
%C Initial values (3,4; 1,2): A296265
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n)*b(n-2),
%C Initial values (1,2; 3,4,5): A296266
%C Initial values (1,3; 2,4,5): A296267
%C Initial values (1,4; 2,3,5): A296268
%C Initial values (2,3; 1,4,5): A296269
%C Initial values (2,4; 1,3,5): A296270
%C Initial values (3,4; 1,2,5): A296271
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n)*b(n-1),
%C Initial values (1,2; 3,4,5): A296272
%C Initial values (1,3; 2,4,5): A296273
%C Initial values (1,4; 2,3,5): A296274
%C Initial values (2,3; 1,4,5): A296275
%C Initial values (2,4; 1,3,5): A296276
%C Initial values (3,4; 1,2,5): A296277
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + b(n)*b(n-1)*b(n-2),
%C Initial values (1,2; 3,4,5): A296278
%C Initial values (1,3; 2,4,5): A296279
%C Initial values (1,4; 2,3,5): A296280
%C Initial values (2,3; 1,4,5): A296281
%C Initial values (2,4; 1,3,5): A296282
%C Initial values (3,4; 1,2,5): A296283
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-2),
%C Initial values (1,2; 3): A296284
%C Initial values (1,2; 4): A296285
%C Initial values (1,3; 2): A296286
%C Initial values (2,3; 1): A296287
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + n*b(n-1),
%C Initial values (1,2; 3,4): A296288
%C Initial values (1,3; 2,4): A296289
%C Initial values (1,4; 2,3): A296290
%C Initial values (2,3; 1,4): A296291
%C Initial values (2,4; 1,3): A296292
%C *****
%C Complementary equation a(n) = a(n-1) + a(n-2) + n*b(n),
%C Initial values (1,2; 3,4,5): A296293
%C Initial values (1,3; 2,4,5): A296294
%C Initial values (1,4; 2,3,5): A296295
%C Initial values (2,3; 1,4,5): A296296
%C Initial values (2,4; 1,3,5): A296297
%H Clark Kimberling, <a href="/A296245/b296245.txt">Table of n, a(n) for n = 0..1000</a>
%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
%F a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2)^2 + f(n-2)*b(3)^2 + ... + f(2)*b(n-1)^2 + f(1)*b(n)^2, where f(n) = A000045(n), the n-th Fibonacci number.
%e a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5;
%e a(2) = a(0) + a(1) + b(2)^2 = 28
%e Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...)
%t a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
%t a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
%t j = 1; While[j < 12, k = a[j] - j - 1;
%t While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
%t Table[a[n], {n, 0, k}] (* A296245 *)
%t Table[b[n], {n, 0, 20}] (* complement *)
%Y Cf. A001622, A295862, A296000.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Dec 10 2017