login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3) for n>=1.
6

%I #14 Oct 13 2020 11:58:39

%S 1,1,-5,-197,-65111,-62390159,-125012786669,-447082993406405,

%T -2583111044504384687,-22511408975342644804991,

%U -281350305428215911326408789,-4850582201056517165575319399909,-111834955668396093904661955538037255,-3361788412998032560821833199260880942287,-128987969989211586699135087535153035663946301,-6203990036027464835833031041177436339788197962789

%N E.g.f. A(x) satisfies: [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3) for n>=1.

%C Compare e.g.f. to: [x^(n-1)] exp(x)^n = [x^n] exp(x)^n for n>=1.

%H Paul D. Hanna, <a href="/A296172/b296172.txt">Table of n, a(n) for n = 0..180</a>

%F The logarithm of the e.g.f. A(x) is an integer series:

%F _ log(A(x)) = Sum_{n>=1} A296173(n) * x^n.

%F E.g.f. A(x) satisfies:

%F _ 1/n! * d^n/dx^n A(x)^(n^3) = 1/(n-1)! * d^(n-1)/dx^(n-1) A(x)^(n^3) for n>=1, when evaluated at x = 0.

%F a(n) ~ -sqrt(1-c) * 3^(3*n - 3) * n^(3*n - 3) / (c^n * (3-c)^(2*n - 3) * exp(3*n)), where c = -LambertW(-3*exp(-3)) = -A226750. - _Vaclav Kotesovec_, Oct 13 2020

%e E.g.f.: A(x) = 1 + x - 5*x^2/2! - 197*x^3/3! - 65111*x^4/4! - 62390159*x^5/5! - 125012786669*x^6/6! - 447082993406405*x^7/7! - 2583111044504384687*x^8/8! - 22511408975342644804991*x^9/9! - 281350305428215911326408789*x^10/10! - 4850582201056517165575319399909*x^11/11! - 111834955668396093904661955538037255*x^12/12! +...

%e To illustrate [x^(n-1)] A(x)^(n^3) = [x^n] A(x)^(n^3), form a table of coefficients of x^k in A(x)^(n^3) that begins as

%e n=1: [(1), (1), -5/2, -197/6, -65111/24, -62390159/120, -125012786669/720, ...];

%e n=2: [1, (8), (8), -1040/3, -71152/3, -64676744/15, -63817770776/45, ...];

%e n=3: [1, 27, (567/2), (567/2), -787941/8, -648507951/40, -405807483249/80, ...];

%e n=4: [1, 64, 1856, (88448/3), (88448/3), -689015872/15, -611019817664/45, ...];

%e n=5: [1, 125, 14875/2, 1649375/6, (156207625/24), (156207625/24), ...];

%e n=6: [1, 216, 22680, 1533168, 73812816, (12455715384/5), (12455715384/5), ...];

%e n=7: [1, 343, 115591/2, 38174185/6, 12294445009/24, 3808296195823/120, (1051338418817239/720), (1051338418817239/720), ...];

%e ...

%e in which the diagonals indicated by parenthesis are equal.

%e Dividing the coefficients of x^(n-1)/(n-1)! in A(x)^(n^3) by n^3, we obtain the following sequence:

%e [1, 1, 21, 2764, 1249661, 1383968376, 3065126585473, 11913154589356672, 74286423963211939641, 696469981042645688972800, ...].

%e LOGARITHMIC PROPERTY.

%e Amazingly, the logarithm of the e.g.f. A(x) is an integer series:

%e log(A(x)) = x - 3*x^2 - 30*x^3 - 2686*x^4 - 517311*x^5 - 173118807*x^6 - 88535206152*x^7 - 63977172334344*x^8 - 61971659588102940*x^9 - 77470793599569049440*x^10 - 121439997599825393413344*x^11 - 233353875172602479932391040*x^12 - 539638027429765922735002220880*x^13 - 1479049138515818646669055218090480*x^14 - 4742815067612592169849894663392228480*x^15 +...

%o (PARI) {a(n) = my(A=[1]); for(i=1,n+1, A=concat(A,0); V=Vec(Ser(A)^((#A-1)^3)); A[#A] = (V[#A-1] - V[#A])/(#A-1)^3 ); n!*A[n+1]}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A296173, A296170, A296174, A296176.

%K sign

%O 0,3

%A _Paul D. Hanna_, Dec 07 2017