login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Least number with the same prime signature as 1 + A002322(n), where A002322 is Carmichael's lambda.
5

%I #6 Dec 05 2017 21:21:56

%S 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,2,2,2,2,2,2,4,2,2,

%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,6,2,2,2,2,6,2,2,2,2,2,2,2,2,2,2,2,2,2,

%U 2,2,2,2,2,2,6,2,2,2,2,2,6,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,6,2,2,2,2,2,2,2,2,2,6,2,2,2,2,12,2,2,2,4,2

%N Least number with the same prime signature as 1 + A002322(n), where A002322 is Carmichael's lambda.

%H Antti Karttunen, <a href="/A296076/b296076.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = A046523(A263027(n)) = A046523(1+A002322(n)).

%o (PARI)

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011

%o A296076(n) = A046523(1+lcm(znstar(n)[2]));

%Y Cf. A002322, A046523, A263027, A263028 (positions of 2's), A296077, A296078.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 05 2017