Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 01 2018 05:53:05
%S 1,1,0,1,1,0,1,2,2,0,1,3,5,3,0,1,4,9,10,4,0,1,5,14,22,18,6,0,1,6,20,
%T 40,48,32,9,0,1,7,27,65,101,99,55,12,0,1,8,35,98,185,236,194,90,16,0,
%U 1,9,44,140,309,481,518,363,144,22,0,1,10,54,192,483,882,1165,1080,657,226,29,0,1,11,65,255,718,1498,2330,2665,2162,1155,346,38,0
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.
%F G.f. of column k: Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.
%F G.f. of column k: Product_{j>=1} ((1 - x^(4*j))/(1 - x^j))^k.
%F G.f. of column k: 2^(-k/2)*(theta_2(0,x)/(x^(1/8)*theta_2(Pi/4,sqrt(x))))^k, where theta_() is the Jacobi theta function.
%e G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 8)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 59*k + 18)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 215*k^2 + 330*k + 144)*x^5 + ...
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 2, 3, 4, 5, ...
%e 0, 2, 5, 9, 14, 20, ...
%e 0, 3, 10, 22, 40, 65, ...
%e 0, 4, 18, 48, 101, 185, ...
%e 0, 6, 32, 99, 236, 481, ...
%t Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i))/(1 - x^(2 i - 1)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
%t Table[Function[k, SeriesCoefficient[Product[((1 - x^(4 i))/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
%t Table[Function[k, SeriesCoefficient[2^(-k/2) (EllipticTheta[2, 0, x]/(x^(1/8) EllipticTheta[2, Pi/4, Sqrt[x]]))^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
%Y Columns k=0..8 give A000007, A001935, A001936, A001937, A093160, A001939, A001940, A001941, A092877.
%Y Main diagonal gives A296044.
%Y Antidiagonal sums give A302020.
%Y Cf. A296067.
%K nonn,tabl
%O 0,8
%A _Ilya Gutkovskiy_, Dec 04 2017